Laws of Large Numbers for Random Linear

Authors: not saved
Abstract:

The computational solution of large scale linear programming problems contains various difficulties. One of the difficulties is to ensure numerical stability. There is another difficulty of a different nature, namely the original data, contains errors as well. In this paper, we show that the effect of the random errors in the original data has a diminishing tendency for the optimal value as the number of constraints and the number of variables increase. The laws of large numbers in probability theory are mathematical formulations for indicating the slowing-down tendency of the effect of random errors in the data. This paper was inspired by the paper of Prekopa [3]. Prekopa [3] proved both weak and strong laws of large numbers for the random linear programs in independence setting. We obtain laws of large numbers under negatively associated dependence for random linear programs and we extend Prekopa's results [3] to the case of negatively associated random variables.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES

In this paper, we extend and generalize some recent results on the strong laws of large numbers (SLLN) for pairwise independent random variables [3]. No assumption is made concerning the existence of independence among the random variables (henceforth r.v.’s). Also Chandra’s result on Cesàro uniformly integrable r.v.’s is extended.

full text

on the laws of large numbers for dependent random variables

in this paper, we extend and generalize some recent results on the strong laws of large numbers (slln) for pairwise independent random variables [3]. no assumption is made concerning the existence of independence among the random variables (henceforth r.v.’s). also chandra’s result on cesàro uniformly integrable r.v.’s is extended.

full text

Strong laws of large numbers for random forests

Random forests are studied. A moment inequality and a strong law of large numbers are obtained for the number of trees having a fixed number of nonroot vertices.

full text

Strong Laws of Large Numbers for Weighted Sums of Random Elements in Normed Linear Spaces

Consider a sequence of independent random elements {Vn, n > in a real separable normed linear space (assumed to be a Banach space in most of the results), and sequences of constants {a,, n > and {ha, n with 0 < b, "[" oo. Sets of conditions are provided for {an(V EVn) n > to obey a general strong law of large numbers of the form aj(Vj EVj)/bn --> 0 almost certainly. The hypotheses involve the d...

full text

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

full text

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 19  issue 3

pages  -

publication date 2008-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023